
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Bidirectional Path Tracing with MIS and Light Sources
Lingheng Tony Tao

linghent@andrew.cmu.edu
Carnegie Mellon University

Pittsburgh, PA, USA

Figure 1: Bidirectional Path Tracer 4 Steps.

ABSTRACT
This report presents a comprehensive analysis of bidirectional path
tracing (BDPT) integrated with multiple importance sampling (MIS)
techniques, aimed at enhancing the efficiency and accuracy of ren-
dering in computer graphics. Bidirectional path tracing is a robust
light transport simulation method that combines two tracing pro-
cesses: one starting from the camera and the other from the light
sources. However, the integration of MIS within BDPT is critical.
We discuss the theoretical foundations of MIS in the context of
BDPT, highlighting how it mitigates issues related to redundant
path sampling and the challenges in weighting path contributions
correctly. Experimental results, based on a series of complex virtual
scenes, demonstrate that the combined BDPT-MIS approach signifi-
cantly outperforms standard path tracing methods in terms of both
speed and image quality. The paper concludes with a discussion of
practical implementation strategies and potential areas for future
research in the optimization of light transport algorithms.

CCS CONCEPTS
• Computing methodologies→ Ray tracing.

KEYWORDS
Ray Tracing, Bidirectional, Path Tracing, Delta Light, Multiple Im-
portance Sampling, Rendering Equation, Global Illumination

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CMU PBR Final Project, April 30th, 2024, Pittsburgh, PA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN CMU 15-668 Physically Based Rendering
https://doi.org/this-is-a-placeholder

ACM Reference Format:
Lingheng Tony Tao. 2018. Bidirectional Path Tracing with MIS and Light
Sources. In Proceedings of Make sure to enter the correct conference title from
your rights confirmation emai (CMU PBR Final Project). ACM, New York, NY,
USA, 13 pages. https://doi.org/this-is-a-placeholder

1 INTRODUCTION
Rendering realistic images through light transport simulation is
pivotal in computer graphics, but it often faces challenges like high
variance and slow convergence, especially in complex lighting sce-
narios. For example, if the area of illumination region is rather
small, it can be difficult for path tracers to find a path touching
the light sources. Bidirectional path tracing (BDPT) enhances tra-
ditional path tracing by initiating rays from both the camera and
light sources, improving efficiency in difficult lighting conditions.
However, BDPT can still struggle with scene complexity.

Integrating Multiple Importance Sampling (MIS) with BDPT op-
timizes the rendering process by combining different sampling
strategies to reduce variance. This paper explores the theoretical
and practical aspects of combining BDPT with MIS, demonstrating
through experiments that this approach outperforms traditional
methods in both speed and image quality.We aim to provide insights
into their application and potential improvements in real-world
settings.

2 LIGHT SOURCES
In order for objects in the scene to be visible, there must be a source
of illumination so that some light is reflected from them to the
camera sensor. In the past assignments we have implemented the
light through materials. Namely, the material can be emissive and
thus provide illumination. We have implemented a diffuse area
light called DiffuseLight, inherited from the base class Material.
It has been a good light source for providing area light, and we
have been using it throughout the whole semester on the quad
light in the scenes. However, the ideal delta light sources cannot be

2024-04-29 05:48. Page 1 of 1–13.

https://orcid.org/15-668
https://doi.org/this-is-a-placeholder
https://doi.org/this-is-a-placeholder

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

CMU PBR Final Project, April 30th, 2024, Pittsburgh, PA Tao et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

implemented using our DiffuseLight, technically because their
foundamental difference in sampling behaviors.

Therefore, before starting on the BDPT algorithms, we may want
our ray tracer to provide complete support to the delta light sources
as well.

2.1 DeltaPoint Class
A delta light source refers to an idealized point light source that
emits light from a single, infinitesimally small point. These types
of light sources are characterized by having a highly directional
output, emitting light in a specific direction with a distribution that
approximates a Dirac delta function. Due to their infinitesimal size,
delta light sources do not have a surface area from which light can
be emitted in different directions, which makes them distinct from
area light sources.

In previous assignments, area lights were treated as inherently
emissive materials, with materials being applied to surfaces that
carry these properties. We have developed the Surface class to
represent surface geometries. In our code, emitters have also been
considered surfaces. To minimize the need for extensive code re-
structuring, it is logical to introduce a class representing point ge-
ometries, utilizing SurfaceBase as the foundation. This approach
should be adopted even though a point geometry differs signif-
icantly from other geometries like quads, triangles, spheres, or
meshes.

2.1.1 Declaration and Definition. This section describes the decla-
ration of the DeltaPoint class. It is declared in include/dirt/quad.h
and defined in src/quad.cpp.

// quad.h

class DeltaPoint : public Surface {

public:

⟨Constructors⟩
⟨Sample and Probability Functions⟩
⟨Other Overriding Functions⟩

protected:

⟨Delta Point Protected Data⟩
};

There is not much to elaborate on regarding the constructors, so
we will skip this section. The crucial and distinctive aspects lie in
the sampling and probability density functions. These elements
fundamentally differentiate point geometries from other types of
geometries.

2.1.2 Sampling. In the semantics of our code base, the sample func-
tion for a surfaceA returns a vector that points from a query point
o toA. On the other hand, we would also like to get a random point
on the query surface. Therefore, we should add another sampling
function called sampleOn() in the base SurfaceBase class.

In include/dirt/surface.h, revise the code of SurfaceBase:

// surface.h

⟨SurfaceBase Class Code Base⟩+ ≡
virtual Vec3f sampleOn(const Vec2f &sample) const

{ return Vec3f (0.f); }

virtual float pdfOn(const Vec3f &v) const

{ return 0.f; }

The sampleOn() function samples a random point on the surface,
and pdfOn() returns the probability density of the sample gener-
ated by sampleOn().

Adding these functions to the SurfaceBase class, we will re-
quire all the derived classes to implement their own corresponding
overridden functions. This can be done by simply changing the
original sample() function, since originally we also need to sample
a point on the surface; we are basically ignoring the input query
origin. In fact, we can simply return sample(Vec3f(0.f)).

Back to the DeltaPoint class. The point is representing a space
that occupying zero volume. Therefore, if we want to sample a
point on the point, we can only return itself.
// quad.h

⟨Sample and Probability Functions⟩+ ≡
Vec3f sampleOn(const Vec2f &sample) const {

return m_xform.point(Vec3f (0.f));

}

Similarly, if we want to sample a direction from a point o to the
delta point, we simply return the vector that points from o to the
delta point.
// quad.h

⟨Sample and Probability Functions⟩+ ≡
Vec3f sample(const Vec3f &o, const Vec2f &sample)

const {

return m_xform.point(Vec3f (0.f)) - o;

}

Now, the function pdfOn() describes the probability density of
sampling the point returned by sampleOn(). This should always
return 1 for a delta point, as long as the input point is returned
from DeltaPoint::sampleOn().
// quad.h

⟨Sample and Probability Functions⟩+ ≡
float pdfOn(const Vec3f &v) const {

return 1.0f;

}

Finally, the function pdf() returns the probability density of the
direction generated by sample(). It is clear that if a ray shooting
from the query origin o with direction v does not go through the
point, it is considered a miss, therefore return 0 probability density.
However, if it indeed hit the point (by checking it actually goes
through the point), we return 1 in our structure. This is because
this direction can only be found if we use our sample() function
to generate this direction, considering the point is infinitesimally
small.
// quad.h

⟨Sample and Probability Functions⟩+ ≡
float pdfOn(const Vec3f &v) const {

auto ray = Ray3f(o, v);

HitInfo hit;

if(intersect(ray , hit)) return 1.0f;

return 0.f;

}

Here we used the intersect() function which we will cover soon.

2.1.3 IntersectionQuery. The intersect() function trivially checks
if the ray pass through the point, but since we can only save the
position of our point using finitely-accurate float number, we will
have rounding error. We need to address this error by using a small

2024-04-29 05:48. Page 2 of 1–13.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Bidirectional Path Tracing with MIS and Light Sources CMU PBR Final Project, April 30th, 2024, Pittsburgh, PA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

value 𝜖 when checking zero, instead of compare it directly with zero.
In the semantics of our code base, we also require the intersect()
function to set up the hit information.
// quad.cpp

⟨Other Overriding Functions⟩+ ≡
bool DeltaPoint :: intersect(const Ray3f &ray , HitInfo

&hit) const {

INCREMENT_INTERSECTION_TESTS;

// compute ray intersection (and ray parameter).

// continue if not hit

auto tray = m_xform.inverse ().ray(ray);

float t = -tray.o.z / tray.d.z;

auto p = tray(t);

if(abs(p.x) >= Epsilon || abs(p.y) >= Epsilon) {

return false;

}

Vec3f gn =

normalize(m_xform.normal(-normalize(ray.d)));

Vec2f uv = Vec2f (0.f);

hit = HitInfo(t, m_xform.point(p), gn, gn,

uv, m_material.get(),

m_medium_interface.get(), this);

return true;

}

2.1.4 Bounding Box. Maintaining a bounding box for a point might
appear awkward, but as previously mentioned, it’s necessary to
account for rounding errors. Therefore, instead of defining a bound-
ing box with strictly zero volume, we assign it a slightly looser
boundary.
// quad.cpp

⟨Other Overriding Functions⟩+ ≡
Box3f DeltaPoint :: localBBox () const {

return Box3f(-Vec3f(Epsilon), Vec3f(Epsilon));

}

2.1.5 Private Data. We will keep the similar information as what
other Surfaces do. The only difference is that the size of the point
should be strictly zero.
// quad.h

⟨Delta Point Protected Data⟩+ ≡
Vec2f m_size = Vec2f (0.f);

shared_ptr <const Material > m_material;

shared_ptr <const MediumInterface > m_medium_interface;

And these complete the DeltaPoint class.

2.2 Light Class
Initially, our code base did not feature a distinct class for lights; in-
stead, lighting effects were achieved by applying Materials, specifi-
cally DiffuseLight, to surfaces. Although delta lights are typically
differentiated from emissive materials in most game engines and
commercial renderers, our existing DeltaPoint class treats points
as a subset of Surface. Consequently, if we decide to introduce a
dedicated class for lights, it would be logical to derive this Light
class from Material, aligning with our current architecture and
simplifying integration.

In include/dirt/light.h and src/light.cpp, we have the
code for implementing the lights.

// light.h

class Light : public Material {

public:

virtual Color3f emitted(const Ray3f &ray , const

HitInfo &hit) const

{ return Color3f (0.f); };

bool isEmissive () const override

{ return true; }

virtual bool isDelta () const

{ return false; }

Color3f emit;

};

2.3 Point Light
Now we have the correct geometry to represent the behavior of a
point, and we can start implementing the point light source using a
delta point. Following the convention, PointLights are positioned
at the origin in the light space, but for the sake of convenience, we
may also maintain a world space position of the point lights using
a Vec3f.

2.3.1 Mathematical Representation. For point lights, which are
light sources that distribute energy uniformly across a sphere sur-
rounding the light, let Φ represent the radiant flux of the point light.
Assuming uniform energy distribution across the surface of the
sphere, the irradiance 𝐸 at any point on the sphere’s surface, with
radius 𝑟 , is calculated by dividing the total flux by the surface area:

𝐸 =
Φ

4𝜋𝑟2
. (1)

Radiance 𝐿 is defined as the flux per unit solid angle per unit pro-
jected area. For a point light, the projected area is effectively the
same in any direction because there is no cosine term that typi-
cally appears with extended surfaces. Thus, the radiance can be
expressed simply as:

𝐿 =
Φ

4𝜋
. (2)

Notice that this is irrelevant with respect to the distance 𝑟 .

2.3.2 Implementation. Nowwe can start implementing PointLight.
Obviously, PointLight is a derived class of Light, so we basically
should overwrite the emitted() function. The emitted() function
takes an input Ray3f ray, as well as a hit information HitInfo
hit. However, according to the definition of a light with Dirac delta
distribution, we know that it only emits the direction where the
ray actually hits the light. Thus, the function becomes trivial.

In include/dirt/light.h and src/light.cpp, we have the
code for implementing the PointLight.

// light.cpp

Color3f PointLight :: emitted(const Ray3f &ray , const

HitInfo &hit) const {

if (abs(hit.p.x-position.x)<Epsilon

&& abs(hit.p.y-position.y)<Epsilon

&& abs(hit.p.z-position.z)<Epsilon)

return emit;

else

return Color3f (0.f);

}

2024-04-29 05:48. Page 3 of 1–13.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

CMU PBR Final Project, April 30th, 2024, Pittsburgh, PA Tao et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

2.3.3 Results. Using the above implementation, we can success-
fully output a correct rendering of PointLight. For now we are
using the PathTracerMIS integrator, simply because we know that
naive stochastic path tracer will always fail in finding a light path
that goes through a delta light.

Figure 2: Point Light Cornell Box Scene (128 spp / 64 max
depth) using PathTracerMIS.

2.4 Spotlight
Spotlights serve as a practical adaptation of point lights; instead
of dispersing light in all directions, they concentrate their beam
within a directional cone. For ease of definition within the light
coordinate system, we will place the spotlight consistently at the
position (0, 0, 0) and direct it along a direction vector d.

2.4.1 Mathematical Representation. Spotlights are also delta lights,
which means the position for a single spotlight is just the position
for the illuminating point. In Figure 3, it shows the important data
describing a spotlight.

Other than the intensity and position, the following quantities
also identifies a spotlight:
• Inner angle 𝜃inner. It identifies the angular region where
radiance does not falloff with respect to the smaller angle
between the (reversed) incoming ray direction and the spot-
light direction d.
• Outer angle 𝜃outer. It identifies the angular region where it
is still covered by the spotlight with respect to the smaller
angle 𝜃 between the (reversed) incoming ray direction and
the spotlight direction d, but radiance starts to falloff with
respect to the cosine value of 𝜃 .
• Falloff. It describes the attenuation where cos𝜃 falls be-
tween cos𝜃inner and cos𝜃outer.

2.4.2 Implementation. Similar to the PointLights, SpotLights
are also derived from Light. In the SpotLight class, we should
also keep track of the information we mentioned in the last section.

Figure 3: Spotlight.

In include/dirt/light.h and src/light.cpp, we have the code
for implementing the PointLight.
// light.h

⟨Spotlight Public Data⟩+ ≡
Vec3f position;

Vec3f direction;

float cosInnerAngle;

float cosOuterAngle;

float falloff = 0.5f;

Similarly as what we have done for the PointLight, the SpotLight
needs its own emitted() function.
// light.h

Color3f SpotLight :: emitted(const Ray3f &ray , const

HitInfo &hit) const {

if (abs(hit.p.x-position.x)<Epsilon

&& abs(hit.p.y-position.y)<Epsilon

&& abs(hit.p.z-position.z)<Epsilon) {

Vec3f lightDir = -normalize(ray.d);

float cosTheta =

dot(lightDir , normalize(direction));

⟨Process Angular Attenuation⟩
}

// return black otherwise

return Color3f (0.f);

}

It is clear to see that, given the 𝜃 , the angle between the reversed
ray direction and the spotlight direction, it should fall on one of
the following three cases:
• Case 01(cos𝜃 > cos𝜃inner). In this range, we have no angu-
lar attenuation.
• Case 02(cos𝜃 < cos𝜃outer). In this range, the ray is not
covered by the spotlight.
• Case 03(otherwise). In this range, we should have angu-
lar attenuation depending on where cos𝜃 locates at in the
interval of [cos𝜃outer, cos𝜃inner].

With these in mind, we should be able to finish the remaining part
in SpotLight::emitted().

2024-04-29 05:48. Page 4 of 1–13.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Bidirectional Path Tracing with MIS and Light Sources CMU PBR Final Project, April 30th, 2024, Pittsburgh, PA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

// light.cpp

⟨Process Angular Attenuation⟩+ ≡
float angleAttenuation;

if(cosTheta > cosInnerAngle) {

angleAttenuation = 1.0f;

} else if(cosTheta > cosOuterAngle) {

float t =

(cosTheta - cosOuterAngle)

/ (cosInnerAngle - cosOuterAngle);

angleAttenuation = pow(t, falloff);

} else {

angleAttenuation = 0.0f;

}

return emit * angleAttenuation;

2.4.3 Result. Using the above implementation, we can successfully
output a correct rendering of SpotLight. Similarly we are using
the PathTracerMIS integrator.

Figure 4: Spotlight Cornell Box Scene (1024 spp / 128 max
depth) using PathTracerMIS.

3 BIDIRECTIONAL METHOD:
MATHEMATICAL REPRESENTATION

We have concluded our exploration of light sources and now have a
comprehensive representation of various lighting elements within
the scene. This section details the mathematical formulations under-
lying the basic rendering equation, path tracing, and the use of the
Monte Carlo method for solving integral equations. Additionally, it
introduces a bidirectional estimator.

3.1 Light Transport Equation
The Light Transport Equation (LTE), or Rendering Equation, can
be used to describe outgoing radiance on any surface point. The
amount of outgoing radiance 𝐿(x,𝝎𝑜) from point x in direction
𝝎𝑜 can be computed as the sum of emitted radiance and reflected
radiance. [3]

𝐿(x,𝝎𝑜) = 𝐿𝑒 (x,𝝎𝑜) + 𝐿𝑟 (x,𝝎𝑜) (3)

Emitted radiance 𝐿𝑒 (x,𝝎𝑜) from point xin direction 𝝎𝑜 is defined
only in light sources, otherwise it is zero.

𝐿𝑟 (x,𝝎𝑜) =
∫
Ω
𝐿(x′,−𝝎𝑖) 𝑓𝑟 (x,𝝎𝑖 ,𝝎𝑜) |nx · 𝝎𝑖 |d𝝎𝑖 (4)

Reflected radiance 𝐿𝑟 (x,𝝎𝑜) is computed as all incoming light in the
point x, reflected in the direction 𝝎𝑜 where 𝐿(x′,−𝝎𝑖) represents
all incoming radiance from the direction 𝝎𝑖 . To find out how much
radiance is actually r eflected, it is multiplied by the bidirectional
reflectance distribution function (BRDF) 𝑓𝑟 (x,𝝎𝑖 ,𝝎𝑜). Finally, it is
multiplied with the dot product between the normal vector in the
point xand the direction 𝝎𝑖 .

3.2 Importance Transport Equation
The problem that a global illumination algorithm must solve is to
compute the light energy that is visible at every pixel in an image.
Each pixel functions as a sensorwith some notion of how it responds
to the light energy that falls on the sensor. The response function
captures this notion of the response of the sensor to the incident
light energy. This response function is also called the potential
function or importance by different authors. [1]

The Importance Transport Equation (ITE) is similar in form to
the Light Transport Equation:

𝑊 (x,𝝎𝑜) =𝑊𝑒 (x,𝝎𝑜) +𝑊𝑟 (x,𝝎𝑜) (5)

Emitted importance𝑊𝑒 (x,𝝎𝑜) will capture the extent to which the
surface is important to the image.

𝑊𝑟 (x,𝝎𝑜) =
∫
Ω
𝑊 (x′,−𝝎𝑖) 𝑓𝑟 (x,𝝎𝑖 ,𝝎𝑜) |n · 𝝎𝑖) |d𝝎𝑖 (6)

Reflected importance𝑊𝑟 (x,𝝎𝑜) is computed as all incoming im-
portance in the point x, reflected in the direction 𝝎𝑜 . Notice the
similarity to the Equation(4).

Importance flows in the opposite direction as radiance. An infor-
mal intuition for the form of the Importance Transport Equation
can be obtained by considering two surfacesA and B. If surfaceA
is visible to the eye in a particular image, then𝑊𝑒 (A) will capture
the extent to which the surface is important to the image(some
measure of the projected area of the surface on the image). If sur-
face B is also visible in an image and surface A reflects light to
surface B, due to the importance of B, A will indirectly be even
more important. Thus, while energy flows fromA toB, importance
flows from B to A. [1]

3.3 The Measurement Equation
The LTE formulates the steady-state distribution of light energy in
the scene. The ITE formulates the relative importance of surfaces
to the image. The Measurement Equation formulates the problem
that a global illumination algorithm must solve. [1] This equation
brings the two fundamental quantities, importance and radiance,
together as follows.

For each pixel 𝑗 in an image,𝑀𝑗 represents the measurement of
radiance through that pixel 𝑗 . The Measurement Function𝑀 is [5]:

𝑀𝑗 =

∫
Afilm

∫
Ω
𝑊
(𝑗)
𝑒 (xfilm,𝝎)𝐿𝑖 (xfilm,𝝎) |nxfilm · 𝝎 |d𝝎dAfilm

(7)
2024-04-29 05:48. Page 5 of 1–13.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

CMU PBR Final Project, April 30th, 2024, Pittsburgh, PA Tao et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

3.4 Stochastic Path Tracing
Stochastic Path Tracing solves the Light Transport Equation (3)
by using Monte Carlo integration. Instead of integrating over the
whole hemisphere, this algorithm samples the hemisphere to get the
single direction 𝝎𝑖 . The radiance reflected from 𝝎𝑖 is then divided
by a probability density function (PDF) of the sampling 𝝎𝑖 , using
the distribution that samples the direction.

Using Monte Carlo estimation, the Light Transport Equation is
the following:

𝐿(x,𝝎𝑜) = 𝐿𝑒 (x,𝝎𝑜) +
𝐿(x′,−𝝎𝑖) 𝑓𝑟 (x,𝝎𝑖 ,𝝎𝑜) |nx · 𝝎𝑖 |

𝑝 (𝝎𝑖)
(8)

where 𝑝 (𝝎𝑖) is the probability density of the direction 𝝎𝑖 being
sampled. Equation(8) can be obviously evaluated in a recursive
manner. A ray can be traced from the camera into the nearest hit
point x, then sample a new direction 𝝎𝑖 above x, and repeat these
steps until a defined maximal depth, or bounces, has been reached,
or some kind of termination condition, such as Russian Roulette,
has been triggered, described in Veach thesis [7].

The significant problem of the algorithmmentioned above is that
many paths will never hit a light source, therefore their contribution
will be zero. This problem becomes more severe when delta lights
exist in the scene, because the probability of hitting the delta lights
will always be zero. This can be solved by applying strategies such
as Next Event Estimation (NEE) which separates the direct and
indirect component from (4), such as Shirley et al.[6]. It gives us:

𝐿𝑟 (x,𝝎𝑜) = 𝐿direct + 𝐿indirect (9)

The first part of the right side of (9) represents the directional
lighting. This can be computed as:

𝐿direct =

∫
A
𝐿𝑒 (y→ x) 𝑓𝑟 (x,−→xy)𝐺 (x, y)𝑑A𝑖 (10)

Here, 𝐿𝑒 (y→ x) is the emitted light from some point y, −→xy is the
normalized direction vector pointing from x to y and𝐺 (x, y) is the
geometric coupling term, shown as the following diagram.

Figure 5: Geometric Coupling Term.

It is defined as:

𝐺 (x, y) = 𝑉 (x, y)
|nx · −→xy| |ny · −→yx|
| |x − y| |2

(11)

where 𝑉 (x, y) is the visibility test function, which is equal to 1 if a
ray can be shot directly from x to y without hitting anything else,
otherwise it is equal to 0.

3.5 Applying Path Integral
The Light Transport Equation (3), which is integrated over all di-
rections, can be transformed with the path integral formation of
the light, as presented in Veach thesis[7], into a finite equation
which is integrated over surface area. So the overall problem can
be rewritten as:

𝐿P =

∫
𝐷

𝑀𝑗 (P)d𝐷 (12)

In the above equation, 𝐿𝑞 represents the radiance that flow through
a pixel, and𝐷 are all the possible light paths in the scene.P presents
a single light path, and 𝑀𝑗 is a measurement function of light
contribution. Intuitively, this integral is describing that by taking
integral over all the possible path contributions from a pixel, we
will be able to evaluate the radiance passing through that pixel.

Also, Equation (12) can be approximated using Monte Carlo
integration by taking the average of 𝑁 randomly sampled paths:

⟨𝐿P⟩ =
1
𝑁

𝑁∑︁
𝑖=0

𝑀𝑗 (P𝑖)
𝑝 (P𝑖)

(13)

where 𝑝 (P𝑖) is the PDF of sampling path P𝑖 .
As written in Veach thesis[7], the PDF is usually given in respect

to the solid angle 𝑝 (𝝎), for example, when sampling a new direction
using the BRDF. We need to convert into a PDF with respect to
surface area 𝑝 (x), using the Jacobian term to account for the ratio
between the differential area and differential solid angle:

𝑝 (x) = 𝑝 (𝝎)
(
|nx · −→xy|
| |x − y| |2

)
(14)

Similarly, if we apply Monte Carlo integration on a concrete mea-
surement (9) with conversion to the surface area, then we get:

𝐿P =
1
𝑁

𝑁∑︁
𝑖=0

𝐿P𝑖 (15)

where 𝐿P is a radiancemeasurement of pixel and 𝐿P𝑖 is the radiance
of a single sample. After applying the path integral on 𝐿P𝑖 we get:

𝐿P𝑖 =
𝑁𝐸∑︁
𝑡=0

𝐶𝑡 (16)

where 𝐶𝑡 is the contribution of a single path of length 𝑡 and 𝑁𝐸 is
the maximum path length.

Now apply Monte Carlo integration on the contribution 𝐶𝑡 , and
this will give us:

𝐶𝑡 =
𝐿𝑒 (y,−−→yx𝑡)

𝑝 (y) 𝑓𝑟 (x𝑡 ,−−→yx𝑡 ,−−−−−→x𝑡x𝑡−1)𝐺 (x𝑡 , y)(
𝑡−1∏
𝑖=1

𝑓𝑟 (x𝑖 ,−−−−−→x𝑖+1x𝑖 ,−−−−−→x𝑖x𝑖−1) |nx𝑖 · −−−−−→x𝑖x𝑖+1 |
𝑝 (−−−−−→x𝑖+1x𝑖)

) (17)

where y is a point sampled on the light source. The first part of
the Equation (17) corresponds to the direct lighting from y to x𝑡 ,
where 𝐿𝑒 (y,−−→yx𝑡) is the amount of radiance from point y going in
the direction towards x𝑡 . Then it is multiplied with the geometric
coupling term, defined in Equation (11) and also with the BRDF.
The rest of the equation belongs to indirect lighting. It is computed
for each vertex on the path as the product of PDF and cosine term

2024-04-29 05:48. Page 6 of 1–13.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Bidirectional Path Tracing with MIS and Light Sources CMU PBR Final Project, April 30th, 2024, Pittsburgh, PA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

calculated using the dot product of the normal and unit direction
vector, divided by the PDF relative to the BRDF.

3.6 Bidirectional Approach
This approach integrates the strategies of gathering and shooting
rays. Gathering rays from a point on a surface is referred to as
path tracing, which is defined in the preceding Equation (17). The
principle of shooting rays is known as light tracing, which must be
defined to complete the BDPT formulation.

As demonstrated in Veach’s thesis [7], each measurement can
be expressed in the form of Equation (12) using the path integral
framework. Light tracing, which represents a light path from a
point on the surface of a randomly selected emitter in the scene,
can be formulated as:

𝐿P =

𝑁𝐿∑︁
𝑠=0

𝐶𝑠
| |𝑃pixel − 𝑃camera | |2

cos2 𝜃𝐴pixel
(18)

where the sum represents the path from point y0 (the first point on
the light path, which is randomly sampled from one of the emitters
in the scene) to the maximum path length 𝑁𝐿 , 𝐶𝑠 is the single path
contribution, and the rest of the equation is the conversion from
flux to radiance.

The contribution 𝐶𝑠 can be computed as:

𝐶𝑠 =
𝐿𝑒 (y0,−−−→y0y1)
𝑝 (y0,−−−→y0y1)

𝑓𝑟 (y𝑠 ,−−−−−→y𝑠−1y𝑠 ,
−−−−−→y𝑠y𝑠+1)𝐺 (y𝑠 , x)

𝑊𝑒 (x,−−→y𝑠x)
𝑝 (x)

(
𝑠−1∏
𝑖=1

𝑓𝑟 (y𝑖 ,−−−−→y𝑖+1y,
−−−−−→y𝑖y𝑖−1) |ny𝑖 ·

−−−−−→y𝑖y𝑖+1 |

𝑝 (
−−−−−−→
y𝑖+1y𝑖)

) (19)

The first part is the emitted light 𝐿𝑒 (y,−−−→y0y1) from light source at
point y0. The PDF 𝑝 (y,−−−→y0y1) is probability of selecting a ray in the
direction −−−→y0y1. Considering a light that has an uniform distribution
of the emitted light, then PDF is:

𝑝 (y,−−−→y0y1) =
1
2𝜋
· 1
𝐴light

(20)

where 1
𝐴light

arises from uniformly choosing a point on the emitter,

and 1
2𝜋 originates from uniformly selecting a direction over the

hemisphere above the point y0.𝑊𝑒 (x,−−→y𝑠x) represents the impor-
tance of the light ray traveling directly from the light source to
the pixel. This equals 1 when the ray is in front of the camera and
when using a pinhole camera, where only one direction exists for
each point x. Furthermore, when using a pinhole camera, 𝑝 (x) is
also equal to 1, as only x can be chosen as a point.

The next part 𝑓𝑟 (y𝑠 ,−−−−−→y𝑠−1y𝑠 ,
−−−−−→y𝑠y𝑠+1)𝐺 (y𝑠 , x) comes from a direct

ray from y𝑠 to the camera x. The remaining part of the equation
is the product of the BRDF, multiplied with the cosine term and
normalized by the PDF.

3.7 BDPT Estimator
We have already defined both strategies of ray evaluation: one
comes from the light, the other comes from the camera. Bidirec-
tional path tracing can then be defined as

⟨𝐿P⟩ =
𝑁𝐿∑︁
𝑠=0

𝑁𝐸∑︁
𝑡=0

𝑤𝑠,𝑡 ·𝐶𝑠,𝑡 (21)

where 𝐶𝑠,𝑡 is the unweighted contribution of a path with 𝑠 vertices
on the light path and 𝑡 vertices on the camera path. A visibility
test between 𝑠th vertex on the light path and 𝑡 th vertex on the
camera path is a part of the geometric coupling term in contribution
function. And finally, each path should be assigned to a weight
function value𝑤𝑠,𝑡 .

The evaluation of 𝐶𝑠,𝑡 depends on the camera and light path.

𝐶𝑠,𝑡 =


𝐶0,0 if 𝑠 = 0, 𝑡 = 0
𝐶𝑠,0 if 𝑠 > 0, 𝑡 = 0
𝐶0,𝑡 if 𝑠 = 0, 𝑡 > 0
𝐶 Otherwise.

(22)

We have four important cases to address for[4]:

• Case 01 (𝑠 = 0, 𝑡 = 0): light is directly visible from the camera.
The evaluation can be done with direct path between the
point x and y0.

𝐶0,0 = 𝐿𝑒 (y0,−−→y0x)𝐺 (y0, x).

• Case 02 (𝑠 > 0, 𝑡 = 0): this means we have 𝑠 vertices on light
path and zero vertices on camera path, which represents
the classic light tracing algorithm. The contribution can be
evaluated using Equation (19).

𝐶𝑠,0 = 𝐶𝑠

• Case 03 (𝑠 = 0, 𝑡 > 0): this means we have zero vertices on
light path and 𝑡 vertices on camera path, which represents
the classic path tracing algorithm. The contribution can be
evaluated using Equation (17).

𝐶0,𝑡 = 𝐶𝑡

• Case 04 (𝑠 > 0, 𝑡 > 0): the final case is the evaluation of radi-
ance, from 𝑡 camera vertices connected with 𝑠 light vertices
of the light path, reaching the pixel.

𝐶 =
𝐿𝑒 (y0,−−−→y0y1)
𝑝 (y0,−−−→y0y1)

𝐺 (y𝑠 , x𝑡)

𝑓𝑟 (x𝑡 ,−−−→y𝑠x𝑡 ,
−−−−−→x𝑡x𝑡−1) 𝑓𝑟 (y𝑠 ,−−−−−→y𝑠y𝑠+1,

−−−→y𝑠x𝑡)(
𝑡−1∏
𝑖=1

𝑓𝑟 (x𝑖 ,−−−−−→x𝑖+1x𝑖 ,−−−−−→x𝑖x𝑖−1) |nx𝑖 · −−−−−→x𝑖x𝑖+1 |
𝑝 (−−−−−→x𝑖+1x𝑖)

)
(
𝑠−1∏
𝑖=1

𝑓𝑟 (y𝑖 ,−−−−→y𝑖+1y,
−−−−−→y𝑖y𝑖−1) |ny𝑖 ·

−−−−−→y𝑖y𝑖+1 |

𝑝 (
−−−−−−→
y𝑖+1y𝑖)

)
(23)

3.8 Weight Function
Many ways to create a weight function𝑤𝑠,𝑡 are possible. One ap-
proach could be to define a weight function that strictly uses only
camera/light paths; however, this method is quite wasteful since
it discards many already sampled paths. A better approach is to
employ multiple importance sampling (MIS).

It is obvious that each path with 𝑠 + 𝑡 vertices can be sampled in
𝑠 + 𝑡 − 1 different ways. Each path should have such weight, that
together all weights sum to 1. In Veach’s work [7] it is described,
that the most effective way to use MIS, in order to create a weight

2024-04-29 05:48. Page 7 of 1–13.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

CMU PBR Final Project, April 30th, 2024, Pittsburgh, PA Tao et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

function, is with the power heuristic:

𝑤𝑠,𝑡 =
𝑝
𝛽
𝑠∑𝑠+𝑡−1

𝑖=0 𝑝
𝛽

𝑖

(24)

where 𝛽 is recommended to be 2, according to Veach[7]. Taking
𝛽 = 2, Equation (24) reduces to:

𝑤𝑠,𝑡 =
𝑝2𝑠∑𝑠+𝑡−1

𝑖=0 𝑝2
𝑖

=
1∑𝑠+𝑡−1

𝑖=0 (𝑝𝑖/𝑝𝑠)2
(25)

where 𝑝𝑖 is defined as the probability density for generating path
P𝑠,𝑡 using 𝑖 sub light path vertices and 𝑠 + 𝑡 − 𝑖 camera sub path
vertices.

𝑝𝑖 = 𝑝𝑖,𝑠+𝑡−𝑖 (P𝑠,𝑡) (26)
and 𝑝𝑠 is the actual probability with which the path was generated.
According to Veach[7], the current value can be set to 𝑝𝑠 = 1 and
the values of the other 𝑝𝑖 relative to 𝑝𝑠 can be computed using ratio:

𝑝𝑖+1
𝑝𝑖

=

←−
𝑝𝑖 (𝑥)
−→
𝑝𝑖 (𝑥)

(27)

where←−𝑝𝑖 (𝑥) is the probability density of the same path being gen-
erated from the reversed direction, thus called reversed PDF, and
−→
𝑝𝑖 (𝑥) being forward PDF accordingly.

According to Gerogiev [2], the power heuristic equation (25)
can be split into two parts, determining camera and light weight
independently.

𝑤𝑠,𝑡 =
1∑𝑠−1

𝑖=0 (𝑝𝑖,𝑠+𝑡−𝑖/𝑝𝑠,𝑡)2 + 1 +
∑𝑠+𝑡
𝑖=𝑠+1 (𝑝𝑖,𝑠+𝑡−1/𝑝𝑠,𝑡)2

=
1

𝑤light,𝑠−1 + 1 +𝑤camera,𝑡−1

(28)

where

𝑤camera,𝑖 =
←−
𝑝𝑖 (𝑥)
−→
𝑝𝑖 (𝑥)

(𝑤camera,𝑖−1 + 1)

𝑤light,𝑖 =
←−
𝑝𝑖 (𝑥)
−→
𝑝𝑖 (𝑥)

(𝑤light,𝑖−1 + 1)
(29)

These weights can all be evaluated progressively during ray tracing
algorithm.

4 BIDIRECTIONAL METHOD:
IMPLEMENTATION

The implementation primarily concentrates on generating light and
eye paths, computing direct illumination, and establishing vertex
connections. Additionally, it includes a rudimentary—though still
imperfect—implementation of multiple importance sampling.

4.1 The BDPTIntegrator Class and Vertex
Structure

First, we present a high-level overview of the main algorithm be-
fore delving into the details, which form the critical core of the
implementation.

We will follow the convention of adding the new integrator
into include/dirt/integrator.h, and for convenience, the defi-
nitions are provided in src/bdpt.cpp.

// integrator.h

class BDPTIntegrator : public Integrator {

public:

⟨Constructors⟩
⟨Render Function⟩

private:

⟨BDPT Helper Functions⟩
⟨BDPT Private Data⟩

};

We will omit the constructor here. The Render Function should
follow the same interface as before, so it will be same as other
integrators.

// integrator.h

⟨Render Function⟩+ ≡
Color3f Li(const Scene &scene , Sampler &sampler ,

const Ray3f &ray) const override;

In order to calculate the radiance carried by the input ray, we
would follow the BDPT strategy. Namely we will do this in 3 steps:
trace a camera path, trace a light path, and then connect them.
Before adding the helper functions, we need a data structure for
describing the vertices on the light paths. Therefore, we will create
a Vertex structure.

// integrator.h

struct Vertex {

Vec3f wi;

Vec3f wo;

HitInfo hit;

Color3f emitted;

Color3f throughput;

float pdfFwd;

float pdfRev;

Vertex () = default;

};

Now we can simply describe a path as an array of Vertexs.

// integrator.h

⟨BDPT Helper Function⟩+ ≡
vector <Vertex > traceCameraPath

(const Scene &scene , Sampler &sampler ,

const Ray3f &ray) const;

vector <Vertex > traceLightPath

(const Scene &scene , Sampler &sampler) const;

Color3f connect(const Scene &scene ,

const vector <Vertex > &camPath ,

const vector <Vertex > &lightPath ,

size_t s, size_t t) const;

Since we want to calculate the MIS as well, we will add the helper
for computing the MIS.

// integrator.h

⟨BDPT Helper Function⟩+ ≡
float calculateMIS(const vector <Vertex > &camPath ,

const vector <Vertex > &lightPath ,

size_t s, size_t t) const;

The BDPTIntegrator, similar as other integrators, will maintain a
private data for the max bounce depth.

// integrator.h

⟨BDPT Private Data⟩+ ≡
int m_maxBounces = 64;

2024-04-29 05:48. Page 8 of 1–13.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Bidirectional Path Tracing with MIS and Light Sources CMU PBR Final Project, April 30th, 2024, Pittsburgh, PA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

4.2 Tracing A Camera Path
The camera path starts from a point on the image plane. In fact, the
camera samples a ray on the pixel, and asks the integrator for the
radiance carried by the ray. Therefore, we will have a deterministic
starting point, which is the origin of the input ray from the camera.

The high level algorithm can be described as the following:

// bdpt.cpp

vector <Vertex > BDPTIntegrator :: traceCameraPath

(const Scene &scene , Sampler &sampler ,

const Ray3f &ray) const {

vector <Vertex > path;

Ray3f currentRay = ray;

Color3f throughput (1.0f);

Color3f result (0.0f);

float pdfFwd = 1.0f;

float pdfRev = 1.0f;

for(int bounce = 0; bounce < m_maxBounces; ++ bounce)

{

⟨Scene Intersection Test⟩
⟨Sample Surface⟩
⟨Modify Path Throughput⟩
⟨Russian Roulette⟩

}

};

You can find the details of each step in src/bdpt.cpp.

4.3 Tracing A Light Path
The light path follows almost the same steps as the camera path,
except for the first vertex. The first vertex of the camera path does
not fall on the lens; however, the first vertex of the light path falls
on the emitter. This indicates that we need to specially process the
first vertex.

The high level algorithm can be described as the following:

// bdpt.cpp

vector <Vertex > BDPTIntegrator :: traceLightPath

(const Scene &scene , Sampler &sampler) const {

vector <Vertex > path;

Ray3f currentRay = ray;

Color3f throughput (1.0f);

Color3f result (0.0f);

float pdfFwd = 1.0f;

float pdfRev = 1.0f;

⟨Initialize the First Vertex in Light Path⟩
for(int bounce = 0; bounce < m_maxBounces; ++ bounce)

{

⟨Scene Intersection Test⟩
⟨Sample Surface⟩
⟨Modify Path Throughput⟩
⟨Russian Roulette⟩

}

};

You can find the details of each step in src/bdpt.cpp. We will
elaborate on the process of generating the first light vertex here.
Evidently, the first vertex differs from other edges on the path in
many aspects. For instance, all the other vertices on the path are
sampled on the material surface, while the initial vertex is sampled
directly on the light source. This necessitates a separate process for

calculating the PDF and requires a function that can sample a point
on the light source and return the PDF of sampling such a point.

In the current project, we are assuming that all the emitters in
the scene are diffuse area light, so we will use the PDF of sampling
a direction on the hemisphere above the hit point. However, since
we already have DeltaPoint class in hand, we can also quickly
adapt the following part for delta light sources.
// bdpt.cpp

⟨Initialize the First Vertex in Light Path⟩+ ≡
float lightPDF;

Vec2f lightSample = sampler.next2D ();

Vec3f lightPos = scene.sampleEmitters(lightSample ,

lightPDF);

Vec3f tmp = randomOnUnitHemisphere(sampler.next2D ());

Vec3f lightDir(tmp.x, -tmp.z, tmp.y);

float hemispherePDF = 1.0f / (2.0f * M_PI);

HitInfo initHit;

Ray3f currentRay(lightPos , lightDir);

bool lightHit = scene.intersect(currentRay , initHit);

if(! lightHit)

// not hiting , break directly

return path;

Ray3f revertRay(initHit.p, -lightDir ,

Epsilon , INFINITY);

lightHit = scene.intersect(revertRay , initHit);

// should return true but do this for safety

if(! lightHit) return path;

Vertex initVertex;

initVertex.hit = initHit;

initVertex.hit.sn = Vec3f (0.f,-1.f,0.f);

initVertex.pdfFwd = hemispherePDF * lightPDF;

initVertex.pdfRev = 1.0f;

initVertex.wi = Vec3f (0.f);

initVertex.wo = lightDir;

initVertex.throughput = throughput;

initVertex.nextThroughput = throughput;

Color3f initEmit =

initHit.mat ->emitted(revertRay , initHit);

initVertex.emitted = initEmit;

result = initEmit;

path.push_back(initVertex);

4.4 Vertex Connection
The most crucial and intricate part of the BDPT algorithm is con-
necting the camera subpath and light subpath. Once two subpaths
are successfully connected, we can evaluate the radiance carried by
the entire ray using the connect() function. We will perform the
vertex selection in the Li() function, which provides a nested for-
loop that iterates over all the possible combinations for (𝑠, 𝑡)-paths:
specifically, 𝑠 − 1 vertices on the camera path and 𝑡 − 1 vertices on
the light path.

4.4.1 Li() Implementation. We will start by implementing the
Li() which provides the color to the ray tracer program.
// bdpt.cpp

Color3f BDPTIntegrator ::Li

(const Scene &scene , Sampler &sampler ,

const Ray3f &ray) const {

2024-04-29 05:48. Page 9 of 1–13.

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

CMU PBR Final Project, April 30th, 2024, Pittsburgh, PA Tao et al.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Color3f L(0.f);

vector <Vertex > lightPath =

traceLightPath(scene , sampler);

vector <Vertex > cameraPath =

traceCameraPath(scene , sampler , ray);

for(int s = 1; s <= cameraPath.size(); ++s) {

for(int t = 1; t <= lightPath.size(); ++t) {

int depth = t+s-2;

if((s==1 && t==1) || depth < 0

|| depth > m_maxBounces)

continue;

Color3f contribution =

connect(scene , cameraPath , lightPath ,

s-1, t-1);

float misWeight =

calculateMIS(cameraPath ,lightPath ,s,t);

L += contribution * misWeight;

}

}

return L;

}

4.4.2 connect() Implementation. The only remaining work here
is to actually connect two subpaths. The function is in src/bdpt.cpp.
// bdpt.cpp

Color3f BDPTIntegrator :: connect

(const Scene &scene ,

const vector <Vertex > &camPath ,

const vector <Vertex > &lightPath ,

size_t s, size_t t) const {

Vertex cameraVertex = camPath[s];

Vertex lightVertex = lightPath[t];

Vertex initLight = lightPath [0];

Vec3f connectDir = lightVertex.hit.p - cameraVertex.

hit.p;

Ray3f ray(cameraVertex.hit.p, connectDir);

HitInfo hit;

⟨Visibility Test⟩

⟨Special Case Handling for (s,t) = (0,0)⟩

Color3f fCamera = cameraVertex.emitted;

Color3f fLight = lightVertex.emitted;

⟨Special Case Handling for (s,t) = (s,0)⟩
⟨General Case Handling⟩

}

4.4.3 Visibility Test. The visibility test is required for computing
the geometric coupling term in all of the (𝑠, 𝑡) cases, and is quite
straightforward using a ray casting method.

If we are testing the visibility from the point x to y, we can shoot
a ray from xtowards y. Namely, shoot a ray of form

r(𝑡) = x + 𝑡−→xy

The necessity and sufficiency is that the ray should only intersect
with the scene, at 𝑡 = 1, since x + 1 · −→xy = y. If a intersection is
found at 𝑡 < 1, we know that the ray sees something before seeing
y, which indicates yis occluded by that object viewing from x.

// bdpt.cpp

⟨Visibility Test⟩+ ≡
bool hitScene = scene.intersect(ray , hit);

if(! hitScene) return Color3f (0.f);

if(hit.t < 1.0f - Epsilon) return Color3f (0.f);

4.4.4 Geometric Coupling Term. Following the definition of geo-
metric coupling term, we will add a helper function to compute
it.
// bdpt.cpp

⟨BDPT Helper Function⟩+ ≡
float geometryTerm(const Vec3f &nx, const Vec3f &x,

const Vec3f &ny, const Vec3f &y) {

Vec3f connectDir = y - x;

Vec3f norm = normalize(y-x);

float cosTheta_i =

abs(dot(normalize(nx), norm));

float cosTheta_o =

abs(dot(normalize(ny), norm));

return

cosTheta_i * cosTheta_o

/ (length2(connectDir));

}

4.4.5 Special Cases. The special cases follow the exactly process
as what we have discussed in Section 3.7.
// bdpt.cpp

⟨Special Case Handling for (s,t) = (0,0)⟩+ ≡
if(s == 0 && t == 0){

Color3f Le = initLight.emitted;

float g =

geometryTerm(initLight.hit.sn,

initLight.hit.p,

camPath [0]. hit.sn,

camPath [0]. hit.p);

return Le * g;

}

⟨Special Case Handling for (s,t) = (s,0)⟩+ ≡
if (t == 0) {

Vec3f direction =

initLight.hit.p - cameraVertex.hit.p;

Ray3f shadowRay(cameraVertex.hit.p, direction ,

Epsilon , INFINITY);

HitInfo shadowHit;

bool isHit =

scene.intersect(shadowRay , shadowHit);

Color3f Le =

initLight.hit.mat ->

emitted(shadowRay , shadowHit)

/ initLight.pdfFwd;

float hemispherePDF = 1.0f / (2.0f * M_PI);

Le *= hemispherePDF;

Color3f bsdf =

cameraVertex.hit.mat ->

eval(-direction ,

normalize(-cameraVertex.wi),

cameraVertex.hit);

float g = geometryTerm(initLight.hit.sn,

initLight.hit.p,

camPath[s].hit.sn,

camPath[s].hit.p);

2024-04-29 05:48. Page 10 of 1–13.

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Bidirectional Path Tracing with MIS and Light Sources CMU PBR Final Project, April 30th, 2024, Pittsburgh, PA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Color3f load = cameraVertex.throughput;

return Le * bsdf * g * load;

}

4.4.6 General Case. And finally the general case. Still, following
what we have discussed in Section 3.7, we will be able to implement
this part as well.
// bdpt.cpp

⟨General Case Handling⟩+ ≡
Color3f bsdf;

if(cameraVertex.hit.mat ->isEmissive ())

return fCamera;

bsdf = cameraVertex.hit.mat ->

eval(cameraVertex.wi,

normalize(connectDir),

cameraVertex.hit);

Color3f bsdf2 = lightVertex.hit.mat ->

eval(lightVertex.wo,

normalize(connectDir),

lightVertex.hit);

Color3f result = lightVertex.throughput

* cameraVertex.throughput;

result *= bsdf * bsdf2;

result *= initLight.emitted

/ initLight.pdfFwd;

result *= geometryTerm(cameraVertex.hit.sn,

cameraVertex.hit.p,

lightVertex.hit.sn,

lightVertex.hit.p);

return result;

4.5 Multiple Importance Sampling
Obviously, the current Li() function is waiting for the weighting
function to provide the exact weight for each path. Otherwise,
simply averaging the path results or adding themwill not reduce the
variance. As what we shown in Section 3.8, since we have pdfRev
and pdfFwd already computed during the path construction, the
weighting function will be conceptually easy.
// bdpt.cpp

⟨BDPT Helper Function⟩+ ≡
float BDPTIntegrator :: calculateMIS

(const vector <Vertex > &camPath ,

const vector <Vertex > &lightPath ,

size_t s, size_t t) const {

if (s == 1 && t == 1)

return 1.f;

if (s > 1 && t == 1) {

float wCamera = 1.0f;

for (int i = 1; i <= s; i++) {

const Vertex& vertex = camPath[i];

wCamera =

(remap0(vertex.pdfRev)

/ remap0(vertex.pdfFwd))

* (wCamera + 1.0f);

}

return 1.0f / (wCamera + 1.0f);

}

if (s == 1 && t > 1) {

float wLight = 1.0f;

for (int i = 1; i <= t; ++i) {

const Vertex& vertex = lightPath[i];

wLight = (remap0(vertex.pdfRev)

/ remap0(vertex.pdfFwd))

* (wLight + 1.0f);

}

return 1.0f / (1.0f + wLight);

}

float sum_wlight = 1.f;

float sum_wcamera = 1.f;

for(int i = 1; i <=s; i++) {

sum_wcamera = (remap0(camPath[i]. pdfRev)

/ remap0(camPath[i]. pdfFwd))

* (sum_wcamera + 1.0f);

}

for(int i = 1; i <= t; i++) {

sum_wlight =

(remap0(lightPath[i]. pdfRev)

/ remap0(lightPath[i]. pdfFwd))

* (sum_wlight + 1.0f);

}

return

1.f / (sum_wlight + 1 + sum_wcamera);

}

5 BIDIRECTIONAL METHOD: RESULTS
Employing the aforementioned implementation, we can success-
fully generate a rendering using the BDPTIntegrator.

Figure 6: Arithmatically Averaged BDPT Cornell Box Scene
(128 spp / 64 max depth) using BDPTIntegrator.

Although there are still some inaccuracies in the current imple-
mentation, such as incorrect shadow shapes and imprecise weights
for path construction, and we lack the support for automatically
returning the PDF for light sources, these issues can be addressed

2024-04-29 05:48. Page 11 of 1–13.

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

CMU PBR Final Project, April 30th, 2024, Pittsburgh, PA Tao et al.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

with an acceptable amount of effort in future developments. De-
spite these limitations, the current bidirectional path tracer already
demonstrates some advantages over the traditional stochastic path
tracer.

Figure 7: Weighted BDPT Cornell Box Scene (128 spp / 64
max depth) using BDPTIntegrator.

Notice the white noises and incorrect shadow positions com-
pared to the below referece image generated by PathTracerMIS.

Figure 8: Reference Cornell Box Scene (128 spp / 64 max
depth) using PathTracerMIS.

6 CONCLUSION
In conclusion, the implementation of Bidirectional Path Tracing
(BDPT) with Multiple Importance Sampling (MIS) and the inclu-
sion of delta light sources, such as point lights and spotlights, have

significantly enhanced the rendering capabilities of the system.
BDPT+MIS allows for efficient exploration of the path space by
combining the strengths of both camera and light paths, reduc-
ing variance and improving convergence rates. The incorporation
of delta light sources enables the accurate simulation of common
lighting scenarios found in real-world environments. Point lights
provide a simple yet effective way to represent omnidirectional
light sources, while spotlights offer directional control and the abil-
ity to create focused illumination. The successful integration of
these techniques has resulted in a robust and versatile rendering
framework capable of producing high-quality images with realis-
tic lighting effects. The implementation of BDPT+MIS and delta
light sources demonstrates the potential for further advancements
in physically-based rendering and opens up new possibilities for
creating visually compelling and accurate simulations of complex
lighting scenarios.

A RENDERING COMPETITION
For the rendering competition, I rendered a breakfast scene from
the author Wig42. The scene objects and (.json) file can be found
in report/final/Scenes and Jsons. I have rendered using the
Path Tracer with MIS as well as the Bidirectional Path Tracer with
MIS, to show that quality and potential incorrectness in my current
implementation.

The following picture is rendered using BDPTIntegrator with
MIS.

Figure 9: Breakfast Scene (1024 spp / 256 max depth) using
BDPTIntegrator.

Since the light sampling and PDF is not yet supported by the
current implementation of BDPT, the spotlight in the scene has
been removed from the scene. The following picture is rendered

2024-04-29 05:48. Page 12 of 1–13.

https://www.blendswap.com/blend/13363

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Bidirectional Path Tracing with MIS and Light Sources CMU PBR Final Project, April 30th, 2024, Pittsburgh, PA

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

using PathTracerMIS, with the spotlight above the scene. Notice
they are under the same environmental lighting, but the BDPT still
produces a darker rendering.

Figure 10: Breakfast Scene (1024 spp / 256 max depth) using
PathTracerMIS.

ACKNOWLEDGMENTS
Special thanks to Professor Ioannis Gkioulekas, for proffering the
fantastic Physically Based Rendering (15-468/668/868) course at
Carnegie Mellon University, and Teaching Assistant Jeff Tan and
Alan Lee, for the help throughout the final project and the entire
semester.

REFERENCES
[1] Philip Dutre, Kavita Bala, Philippe Bekaert, and Peter Shirley. 2006. Advanced

Global Illumination. AK Peters Ltd.
[2] Iliyan Georgiev, Jaroslav Křivánek, Tomáš Davidovič, and Philipp Slusallek. 2012.

Light transport simulationwith vertex connection andmerging. ACMTrans. Graph.
31, 6, Article 192 (nov 2012), 10 pages. https://doi.org/10.1145/2366145.2366211

[3] James T. Kajiya. 1986. The rendering equation. SIGGRAPH Comput. Graph. 20, 4
(aug 1986), 143–150. https://doi.org/10.1145/15886.15902

[4] Eric Lafortune and Yves Willems. 1998. Bi-Directional Path Tracing. Proceedings
of Third International Conference on Computational Graphics and Visualization
Techniques (Compugraphics’ 93 (01 1998).

[5] Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering:
From Theory to Implementation (3rd ed.). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

[6] Peter Shirley, Changyaw Wang, and Kurt Zimmerman. 1996. Monte Carlo tech-
niques for direct lighting calculations. ACM Trans. Graph. 15, 1 (jan 1996), 1–36.
https://doi.org/10.1145/226150.226151

[7] Eric Veach. 1998. Robust monte carlo methods for light transport simulation. Ph. D.
Dissertation. Stanford, CA, USA. Advisor(s) Guibas, Leonidas J. AAI9837162.

Received 30 April 2024; revised 30 April 2024; accepted 30 April 2024

2024-04-29 05:48. Page 13 of 1–13.

https://doi.org/10.1145/2366145.2366211
https://doi.org/10.1145/15886.15902
https://doi.org/10.1145/226150.226151

	Abstract
	1 Introduction
	2 Light Sources
	2.1 DeltaPoint Class
	2.2 Light Class
	2.3 Point Light
	2.4 Spotlight

	3 Bidirectional Method: Mathematical Representation
	3.1 Light Transport Equation
	3.2 Importance Transport Equation
	3.3 The Measurement Equation
	3.4 Stochastic Path Tracing
	3.5 Applying Path Integral
	3.6 Bidirectional Approach
	3.7 BDPT Estimator
	3.8 Weight Function

	4 Bidirectional Method: Implementation
	4.1 The BDPTIntegrator Class and Vertex Structure
	4.2 Tracing A Camera Path
	4.3 Tracing A Light Path
	4.4 Vertex Connection
	4.5 Multiple Importance Sampling

	5 Bidirectional Method: Results
	6 Conclusion
	A Rendering Competition
	Acknowledgments
	References

